
The Service-Oriented Web

by Mark Baker, Coactus
presented by Makoto Murata

Who am I (Mark)

● Distributed systems specialist
● Former CORBA developer
● Former RMI developer
● Former DCE developer
● Former homegrown-RPC-over-TCP developer

● Achieved “Web nirvana”, 1998
– Realized how the Web related to those other systems

● Now a consultant (Coactus)
– Specializing in machine-to-machine integration on the

Web

Mark's CORBA experience

● 1995; CORBA team lead for telecom project
– Large project; 70 developers
– Defined some common APIs used by other teams

● One common need was data transfer
– Getting data from point A to point B
– I defined getData() operation

● Defined it only for UI-facing objects
– Not all CORBA objects implemented it

● But it was my first data transfer protocol!
● As I learned 2 1/2 years later ...

HTTP was FAR superior to that protocol

Today's Talk

● A visit to 1998
● REST
● REST and SOA compared
● How to “Webize”
● Conclusion

A visit to 1998

● No SOAP
● No WSDL
● No UDDI
● No WS-*

● Just HTTP, URIs, XML

 What can't we do?

Without SOAP, can we not ...

... order a pizza?

POST http://pizza.example.com/order HTTP/1.1
Content-Type: application/pizza+xml
<pizza>
 <size>X-Large</size>
 <type>thin crust</type>
 <topping>anchovies</topping>
 <topping>olives</topping>
</pizza>

Without SOAP, can we not ...

... turn on a light bulb?

PUT http://example.com/kitchen/main HTTP/1.1
Content-Type: application/lightbulb+xml
<lightbulb>
 <state>on</state>
</lightbulb>

Without WSDL, can we not ...

... discover a service's operations?

OPTIONS http://pizza.example.com/order HTTP/1.1

--->

HTTP/1.1 200 Ok
Allow: GET, POST

Without UDDI, can we not ...

... publish service metadata?

GET http://pizza.example.com/order HTTP/1.1

--->

<pizza-order-processor>
 <business-name>Joe's Pizza</business-name>
 <hours>11:00-02:00</hours>
 <minutes-or-free>30</minutes-or-free>
</pizza-order-processor>

Conclusion?

The Web already does services

Corollary ...

“Web services” are unnecessary

What now?

How do we build services in this Web-friendly way?

We need a guide

Today's Talk

● A visit to 1998
● REST
● REST and SOA compared
● How to “Webize”
● Conclusion

REST

● “REpresentational State Transfer”
– “representational state”; a document
– “transfer”; exchange between parties
– Therefore, REST is for document exchange

● An architectural style
– Abstract description of an architecture
– Like “client/server”, “pipe and filter”, ...

● Independent of any particular technology
– Though “REST for the Web” has technology use

implications
● Used (by Roy Fielding) to craft HTTP, URI specs
● As with all arch styles, defined by its constraints ...

Key REST Constraints

● Uniform interface
● Resource identification
● Self-descriptive messages
● Hypermedia as engine of application state

Uniform Interface

● Operations must be meaningful to all resources
– The “java.lang.Object” of network interfaces

getRealTimeStockQuote: not uniform ...
getStockQuote: not uniform ...
getQuote: not uniform ...

GET: uniform
● Uniform implies general

Resource identification

● Identify your resources with a standard syntax
– URIs for the Web

● “Resource”
– Anything identifiable
– e.g. Pizza order processor, your pizza order, the pizza

store, toppings, ...

Self-descriptive Messages

● Stateless interactions
– All data needed to understand the message, is in the

message
● No shared context on server

– Cookies are not RESTful
● Standardized operations (uniform interface)
● Standardized media types

Hypermedia

● Clients make progress by following links
– Not just with GET, but all operations
– e.g. POST a form to a provided URI, get a doc back

with more URIs
● No implicit links

– e.g. Shouldn't specify “Append '/toppings' to all pizza
order URIs to find the toppings for that order”

● Search engines can't find toppings that way (without a
software upgrade)

Today's Talk

● A visit to 1998
● REST
● REST and SOA compared
● How to “Webize”
● Conclusion

REST and SOA Compared

● Contrast typical Web service & Web approaches
● SOA example taken from;

 http://www.strikeiron.com/ProductDetail.aspx?p=168
– “New home buyer” data

SOA/WS Example

REST/Web Equivalent

What are the differences?

● SOA client sees; one service, three operations
● REST client sees; three resources, one operation
● Is one better than the other?

– One operation means substitutability
● All HTTP clients can get data from all servers/resources

– Other benefits of REST
● “Ilities”; scalability, visibility, modifiability, evolvability, ...
● See Roy Fielding's dissertation for the details

– Less formally, REST approach is more ...

Loosely Coupled

Loose Coupling in REST

● Interface and implementation are truly separated
● The more specific the interface, the less the

implementation can change
– “getRealTimeStockQuote” can't be used for a delayed

stock quote service
– ... but “getStockQuote” can
– (as can “GET”, of course)

● A very general (uniform) interface can support
nearly arbitrary implementation changes

Today's Talk

● A visit to 1998
● REST
● REST and SOA compared
● How to “Webize”
● Conclusion

“Webize”

● Name from Tim Berners-Lee
– http://www.w3.org/DesignIssues/Webize

● Requires no changes to existing system
● Just “wrap it” in a Web server

– Web server as “Facade” (GoF design pattern)
● Clients see only Web server, not application-specific

interfaces
– URIs point to resources within existing system

Webizing 101

● Give URIs to sources of distinct chunks of data
– “GetNewHomeBuyers” one source of data
– “CountNewHomeBuyers” another source of data

● But use nouns, not verbs, in URIs;
BAD: http://example.org/GetNewHomeBuyers

● Because PUT on that URI makes no sense
GOOD: http://example.org/newHomeBuyers

– The “GetNewHomeBuyers” operation is completely
opaque to clients and humans

● PUT use is implicit
– GET data, change it, PUT data back

Webizing 101; granularity

● Fine grained get* operations might be better off as
one resource
– e.g for getFirstName(), getLastName(), ... consider one

“Person” resource which answers GET with;

<Person>
 <FirstName>Fred</FirstName>
 <LastName>Jones</LastName>
</Person>

Webizing 101; data sinks

● Webizing supports not just data sources, but also
data sinks
– Accept data submitted via POST
– Much like an email inbox

● Give URIs to distinct sinks
– e.g. Pizza order processor

Webizing 101; hypermedia & forms

● Include URIs in response documents
– But sometimes URIs are not enough
– How do you know what data to POST to a URI?
– ... or how to parameterize a GET (like a “query

URI”)?
● Need to provide this information along with URI

– Known as “forms language”, e.g. HTML Forms,
XForms, RDF Forms

– Can be integrated into application specific format ...

Webizing 101; example “pizza form”

<pizza-order-processor
href=”http://pizza.example.org/order”>

<accept>application/pizza+xml</accept>

</pizza-order-processor>

Conclusion; the bad news

● “Web based services” very different than “Web
services”
– Tough learning curve for SOA/WS developers

● Not much of WS-* salvageable
● Stuck supporting SOAP services

Conclusion; the GOOD news

● Relative simplicity in Web based approach
● Pervasive, mature tooling
● Pervasive, mature infrastructure

– Firewalls, caches, accelerators, ...
● A (hard) lesson learned

– The end of the “plumbing wars”
● Reuse skills of millions of Web developers

Hug a Web developer today!

Thanks!

